

Tetrahedron 58 (2002) 10047-10052

## TETRAHEDRON

## Tandem cyclization: one pot regioselective synthesis of thieno[3,2-c]quinolin-4(5H)-one derivatives

K. C. Majumdar\* and M. Ghosh

Department of Chemistry, University of Kalyani, Kalyani 741 235, W.B., India

Received 28 March 2002; revised 17 September 2002; accepted 10 October 2002

**Abstract**—A number of hitherto unreported 3-(aryloxyacetyl)-2,3-dihydro-5-alkylthieno[3,2-*c*]quinolin-4(5*H*)-ones are regioselectively synthesized in 80-90% yield from 4-(4'-aryloxybut-2'-ynyl)thioquinolin-2(1*H*)-ones by the oxidation with 1 equiv. of *m*-CPBA at  $0-5^{\circ}$ C for 1 h followed by heating under reflux in chloroform and subsequent treatment with 20% aqueous KOH. The substrate, sulfides were prepared by PTC alkylation of 4-mercaptoquinolin-2(1*H*)-one with 1-aryloxy-4-chlorobut-2-ynes. © 2002 Elsevier Science Ltd. All rights reserved.

The Claisen rearrangement<sup>1</sup> provides an excellent method for the formation of carbon–carbon bonds.<sup>2–7</sup> The present importance of the Claisen rearrangement is partly due to its application in the synthesis of oxygen,<sup>8</sup> nitrogen<sup>9</sup> and sulfur<sup>10</sup> heterocycles and partly because of the development of several variants<sup>11–21</sup> of its aliphatic counter part. We had earlier developed a new *ortho*-Claisen rearrangement of aryl propynyl sulfoxides<sup>22–25</sup> and aryl propynyl amine oxides,<sup>26–28</sup> a variant of the aromatic Claisen rearrangement for the construction of the five-membered heterocyclic ring in benzo(*b*)thiophenes and indoles. This protocol was found to be an excellent high yield one step process. Our initial success in the application<sup>29–37</sup> of this protocol and also in the synthesis of quinolone-annulated heterocycles<sup>38,39</sup> inspired us to investigate whether a five-membered thiophene ring in the hitherto unreported thieno[3,2-*c*]-quinolin-4(5*H*)-one system could be constructed via the aforesaid sulfoxide rearrangement. Herein we report the results.

## 1. Results and discussion

The starting materials for this study 3a-f were easily



Scheme 1.

*Keywords*: thieno[3,2-*c*]quinolin-4(5*H*)-one; sulfoxide rearrangement; modified Claisen rearrangement; Michael addition; regioselective synthesis. \* Corresponding author. Tel.: +91-33-5827521; fax: +91-33-5828282; e-mail: kcm@klyuniv.ernet.in



#### Scheme 2.

obtained in 70–85% yield by the phase transfer-catalysed alkylation of 4-mercaptoquinolin-2(1H)-one with 1-aryl-oxy-4-chlorobut-2-ynes in chloroform in the presence of tetrabutyl ammonium bromide (TBAB) and 5% aqueous NaOH for 10–12 h (Scheme 1).

This alkylation when attempted under classical condition by refluxing in acetone in the presence of anhydrous potassium carbonate did not afford any tractable product.

The sulfides 3a-f were characterized from their elemental analyses and spectroscopic data. The IR spectra of the sulfides **3a**-**f** exhibited  $\nu_{\text{max}}$  at 1640-1650 cm<sup>-1</sup> for the amide carbonyl function which establishes the alkylation preference for sulfur over oxygen. Compound 3a showed a three-proton singlet at  $\delta$  3.71 due to NCH<sub>3</sub> group, a two proton-triplet at  $\delta$  3.79 due to SCH<sub>2</sub> group and a two-proton triplet at  $\delta$  4.66 due to OCH<sub>2</sub> group. It also showed a signal at  $\delta$  6.61 (s, 1H, C<sub>3</sub>H). The sulfides **3a**-**f** were oxidised to the corresponding sulfoxides by slow addition of 1 equiv. of *m*-chloroperbenzoic acid in CHCl<sub>3</sub> at  $0-5^{\circ}$ C over a period of 1 h. A highly polar single spot on TLC indicated the formation of the sulfoxides. The sulfoxides were found to be unstable and showed a tendency to undergo reorganization even during work up. Therefore, no attempt was made to characterize these sulfoxides. The thermally labile crude sulfoxides 4a-f were refluxed in chloroform for 2 h leading to the quantitative formation of new compounds 5a-f in 93–96% yields, which were found to be somewhat unstable. We could only isolate compound **5c** in the pure state.

Elemental analyses and mass spectroscopic data confirmed that the product was isomeric with the starting sulfoxide **4c**.

The <sup>1</sup>H NMR and IR spectra of **5c** indicated the presence of a terminal olefin and a hydroxyl function with signals at  $\delta$ 5.92 (s, 1H);  $\delta$  5.98 (s, 1H) and at  $\delta$  3.9 (s, 1H), but showed no evidence for the presence of sulfoxide or acetylenic linkage. The monothiohemiacetal structure **5c** for this product was assigned on the basis of spectral data. As compounds **5a**-**f** showed tendency of decomposition and we failed to isolate compounds **5a**,**b** and **5d**-**f** in the pure state, the products **5a**-**f** were treated with 20% aqueous potassium hydroxide to give stable products **9a**-**f** (Scheme 2). The products **9a**-**f** were characterized from their elemental analyses and spectroscopic data.

Compound **9a** exhibited  $\nu_{\text{max}}$  at 1640 cm<sup>-1</sup> for the amide carbonyl function. <sup>1</sup>H NMR of **9a** showed a double doublet at  $\delta$  3.62–3.67 (*J*=9.5, 11 Hz, 1H) for (–SC*H*–), and another double doublet at  $\delta$  3.75–3.78 (*J*=6.5, 11 Hz, 1H) for (–SC*H*–). It also showed a double doublet at  $\delta$  4.82– 4.85 (*J*=6.5, 9.5 Hz, 1H) for the (C<sub>3</sub>*H*), a doublet at  $\delta$  4.96– 4.99 (*J*=17 Hz, 1H) for (–CO–C*H*–OAr) and another doublet at  $\delta$  5.04–5.07 (*J*=17 Hz, 1H) for (CO–C*H*–OAr). <sup>13</sup>C NMR and DEPT experiment also supports the formation of **9a**. DEPT experiment showed the presence of one methyl group, two CH<sub>2</sub> group and nine CH groups which confirmed the proposed structure of **9a**.

Final confirmation of structure 9 was arrived at by



intermediate thiol **8**, containing an enone moiety favourably juxtaposed for the formation of the product monothiohemiacetal **5**. The compounds  $5\mathbf{a}-\mathbf{f}$  in the presence of a base may suffer ring opening and then via an intramolecular Michael addition of the thiophenolate to the enone moiety may afford the products  $9\mathbf{a}-\mathbf{f}$  (Scheme 4).

The whole operation if desired can be conducted in a single pot. The methodology described here is a general one for the synthesis of thieno[3,2-c]quinolin-4(5H)ones. This is an exceedingly mild and simple synthesis for this type of fused thieno heterocycles. This is also an example of the application of sulfoxide rearrangement in heterocyclic system.

### 2. Experimental

The melting points were recorded on sulfuric acid bath and are uncorrected. UV absorption spectra were recorded in ethanol on a Hitachi 200-20 spectrometer. IR spectra were run for KBr disks on a Perkin–Elmer-FT IR spectrometer. <sup>1</sup>H NMR, <sup>13</sup>C NMR and DEPT experiments were determined for solutions in deuteriochloroform with SiMe<sub>4</sub> as internal standard on a BRUKER 500 MHz Spectrometer at the Bose Institute (Calcutta). Elemental analyses and mass spectra were recorded at CDRI (LUCKNOW) on a (JEOL D-300 (El)) instrument. Silica



#### Scheme 3.

dehydrogenation of compound **9a** with DDQ in boiling xylene to afford product **10** (Scheme 3).

The formation of 5a-f from the sulfoxides 4a-f is easily explained by the occurrence of a [2,3] signatropic rearrangement in the sulfoxide 4 to give intermediate allenyl sulfenate 6, which then may undergo a [3,3]sigmatropic rearrangement followed by enolisation leading to gel ((60–120 mesh), Spectrochem, India) was used for chromatographic separation. Silica gel G (E. Merck (India)) was used for TLC. Petroleum ether refers to the fraction boiling between 60 and  $80^{\circ}$ C.

## **2.1.** Preparation of sulfides, (3a-f) from 4-mercaptoquinolin-2(1*H*)-ones

A mixture of 1-alkyl-4-mercaptoquinolin-2(1H)-one (0.57 g, 3 mmol) and 1-aryloxy-4-chloro-2-butyne (3.5 mmol) was taken up in CHCl<sub>3</sub> (50 mL). Tetrabutyl ammonium bromide (TBAB) (250 mg) in 5% aqueous NaOH (50 mL) was added and the mixture was stirred at room temperature for 10-12 h. TLC confirmed complete conversion of the starting material. It was then diluted with water (50 mL) and the aqueous layer was extracted with CHCl<sub>3</sub> (50 mL×2). The combined organic layer was washed with water (50 mL×2) followed by brine solution (50 mL) and dried (Na<sub>2</sub>SO<sub>4</sub>). Removal of solvent gave the crude gummy mass which was purified by column chromatography over silica gel (Spectrochem, 60-120 mesh). The pure products were obtained when the column was eluted with ethyl acetate: benzene (1:9). Rf: 0.3 (ethyl acetate/ benzene (1:9)).

**2.1.1. 4-**(**4**'*-p*-**Chlorophenoxybut-2**'-**ynylthio**)-**1**-methylquinolin-2(1*H*)-one (**3a**). Yield 80%; solid (white); mp 134°C; UV (EtOH):  $\lambda_{max}$ : 231, 290, 332 nm; IR (KBr)  $\nu_{max}$ : 2976, 2941, 1646, 1580, 1494 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  3.71 (s, 3H, NCH<sub>3</sub>), 3.79 (t, *J*=1.9 Hz, 2H, SCH<sub>2</sub>), 4.66 (t, *J*=1.9 Hz, 2H, OCH<sub>2</sub>), 6.61 (s, 1H, C<sub>3</sub>*H*), 6.86–6.83 (m, 2H, Ar*H*), 7.17–7.14 (m, 2H, Ar*H*), 7.26–7.25 (m, 1H, Ar*H*), 7.39–7.38 (d, *J*=8.5 Hz, 1H, Ar*H*), 7.62–7.58 (m, 1H, Ar*H*), 7.82–7.8 (dd, *J*=1, 8 Hz, 1H, Ar*H*); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta_{C}$  23 (NCH<sub>3</sub>), 32 (C<sub>1</sub>'), 59 (C<sub>4</sub>'), 82 (C<sub>3</sub>'), 84 (C<sub>2</sub>'), 115 (C<sub>8</sub>), 117 (C<sub>6</sub>'', C<sub>7</sub>'), 122 (C<sub>5</sub>), 125 (C<sub>6</sub>), 127 (C<sub>4a</sub>), 128 (C<sub>3</sub>'', C<sub>3</sub>''), 129 (C<sub>4</sub>''), 131 (C<sub>7</sub>), 132 (C<sub>3</sub>), 142 (C<sub>4</sub>), 144 (C<sub>8a</sub>), 157 (C<sub>1</sub>''), 159 (C<sub>2</sub>). MS *m*/*z* 369, 371 (M<sup>+</sup>); (Found: C, 65.27, H, 4.11, N, 4.0. C<sub>20</sub>H<sub>16</sub>ClNO<sub>2</sub>S requires C, 65.04, H, 4.33, N, 3.79%).

**2.1.2. 4-**(**4**'*-o*-**Chlorophenoxybut-2**'**-ynylthio**)-**1-methylquinolin-2**(**1***H*)-**one** (**3b**). Yield 75%; viscous liquid; UV (EtOH):  $\lambda_{max}$ : 230, 290, 331 nm; IR (neat)  $\nu_{max}$ : 2972, 2940, 1640, 1580, 1480 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 3.71 (s, 3H, NC*H*<sub>3</sub>), 3.8 (t, *J*=1.95 Hz, 2H, SC*H*<sub>2</sub>), 4.68 (t, *J*=1.95 Hz, 2H, OC*H*<sub>2</sub>), 6.61 (s, 1H, C<sub>3</sub>*H*), 6.86–6.83 (m, 2H, Ar*H*), 7.17–7.14 (m, 2H, ArH), 7.25–7.23 (m, 1H, Ar*H*), 7.39–7.38 (d, *J*=8.5 Hz, 1H, Ar*H*), 7.63–7.57 (m, 1H, Ar*H*), 7.82–7.8 (dd, *J*=1.0, 8 Hz, 1H, Ar*H*); MS *m*/*z* 369, 371 (M<sup>+</sup>); (Found: C, 64.84, H, 4.1, N, 3.93. C<sub>20</sub>H<sub>16</sub>CINO<sub>2</sub>S requires C, 65.04, H, 4.33, N, 3.79%).

**2.1.3. 4-**(**4'**-**Phenoxybut-2'-ynylthio)-1-methylquinolin-2(1H)-one (3c).** Yield 75%; Viscous liquid; UV (EtOH):  $\lambda_{max}$ : 230, 296, 333 nm; IR (neat)  $\nu_{max}$ : 2975, 2940, 1645, 1580, 1490 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  3.7 (s, 3H, NCH<sub>3</sub>), 3.80 (t, *J*=1.9 Hz, 2H, SCH<sub>2</sub>), 4.68 (t, *J*= 1.9 Hz, 2H, OCH<sub>2</sub>), 6.62 (s, 1H, C<sub>3</sub>H), 6.95–6.92 (m, 3H, ArH), 7.27–7.22 (m, 3H, ArH), 7.38–7.36 (d, *J*=8.5 Hz, 1H, ArH), 7.61–7.58 (m, 1H, ArH), 7.83–7.81 (dd, *J*=1.0, 8 Hz, 1H, ArH); MS *m*/*z* 335 (M<sup>+</sup>); (Found: C, 71.42, H, 5.27, N, 4.4.  $C_{20}H_{17}NO_2S$  requires C, 71.64, H, 5.07, N, 4.17%).

**2.1.4. 4-**(*4'-o*-**Methylphenoxybut-2'-ynylthio)-1-methylquinolin-2(1***H***)-one (3d). Yield 85%; Viscous liquid; UV (EtOH): \lambda\_{max}: 230, 331, 290 nm; IR (neat) \nu\_{max}: 2976, 2940, 1650, 1580, 1488 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): \delta 2.21 (s, 3H, CH<sub>3</sub>), 3.7 (s, 3H, NCH<sub>3</sub>), 3.8 (t,** *J***=1.9 Hz, 2H, SCH<sub>2</sub>), 4.7 (t,** *J***=1.9 Hz, 2H, OCH<sub>2</sub>), 6.63 (s, 1H, C<sub>3</sub>H), 6.88–6.82 (m, 2H, ArH), 7.11–7.08 (m, 2H, ArH), 7.25– 7.24 (m, 1H, ArH), 7.38–7.36 (d,** *J***=8.5 Hz, 1H, ArH), 7.61–7.58 (m, 1H, ArH), 7.83–7.81 (dd,** *J***=1.0, 8 Hz, 1H, ArH); MS** *m***/***z* **349 (M<sup>+</sup>); (Found: C, 72.48, H, 5.61, N, 3.74. C<sub>21</sub>H<sub>19</sub>NO<sub>2</sub>S requires C, 72.2, H, 5.44, N, 4.01%).** 

**2.1.5. 4-**(**4**'*-p*-**Methylphenoxybut-2**'**-ynylthio**)-**1-methylquinolin-2(1***H***)-one (<b>3e**). Yield 80%; viscous liquid; UV (EtOH):  $\lambda_{max}$ : 229, 292, 330 nm; IR (neat)  $\nu_{max}$ : 2970, 2938, 1640, 1582, 1490 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 2.25 (s, 3H, CH<sub>3</sub>), 3.7 (s, 3H, NCH<sub>3</sub>), 3.79 (t, *J*=2 Hz, 2H, SCH<sub>2</sub>), 4.65 (t, *J*=2 Hz, 2H, OCH<sub>2</sub>), 6.62 (s, 1H, C<sub>3</sub>H), 6.83–6.80 (m, 2H, ArH), 7.05–7.03 (m, 2H, ArH), 7.25– 7.22 (m, 1H, ArH), 7.38–7.36 (d, *J*=8.5 Hz, 1H, ArH), 7.61–7.58 (m, 1H, ArH), 7.83–7.81 (dd, *J*=1.0, 8 Hz, 1H, ArH); MS *m*/*z* 349 (M<sup>+</sup>); (Found: C, 72.46, H, 5.15, N, 4.3. C<sub>21</sub>H<sub>19</sub>NO<sub>2</sub>S requires C, 72.2, H, 5.44, N, 4.01%).

**2.1.6. 4-(4'-Dimethylphenoxybut-2'-ynylthio)-1-methylquinolin-2(1***H***)-one (<b>3f**). Yield 70%; viscous liquid; UV (EtOH):  $\lambda_{max}$ : 230, 333 nm; IR (neat)  $\nu_{max}$ : 2974, 2940, 1640, 1580, 1490 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 2.21 (s, 3H, CH<sub>3</sub>), 2.23 (s, 3H, CH<sub>3</sub>), 3.69 (s, 3H, NCH<sub>3</sub>), 3.8 (t, *J*=2 Hz, 2H, SCH<sub>2</sub>), 4.68 (t, *J*=2 Hz, 2H, OCH<sub>2</sub>), 6.61 (s, 1H, C<sub>3</sub>H), 6.68–6.63 (m, 2H, ArH), 6.98–6.96 (m, 1H, ArH), 7.25–7.22 (m, 1H, ArH), 7.37–7.36 (d, *J*= 8.5 Hz, 1H, ArH), 7.61–7.57 (m, 1H, ArH), 7.83–7.81 (dd, *J*=1.0, 8 Hz, 1H, ArH); MS *m*/*z* 363 (M<sup>+</sup>); (Found: C, 72.47, H, 5.56, N, 4.1. C<sub>22</sub>H<sub>21</sub>NO<sub>2</sub>S requires C, 72.72, H, 5.78, N, 3.85%).

## 2.2. General procedure for the oxidation and rearrangement of 4-(4'-aryloxybut-2'ynylthio)-1-methylquinolin-2(1*H*)-one

mCPBA (0.345 g, 50%, 1 mmol) in CHCl<sub>3</sub> (50 mL) was slowly added to a well-stirred solution of 4-(4'-aryloxybut-2'-ynylthio)-1-methylquinolin-2(1H)-one (1 mmol) in CHCl<sub>3</sub> (30 mL) at  $0-5^{\circ}$ C over a period of 30 min. The mixture was stirred for half an hour more. Some *m*-chloroperbenzoic acid separated as insoluble solid at this low temperature. After completion of reaction (TLC monitoring), the reaction mass was washed successively with 5%  $Na_2CO_3$  solution (50 mL×2) to remove the organic acid, water (50 mL $\times$ 2) and dried (Na<sub>2</sub>SO<sub>4</sub>). Sodium sulfate was filtered off and the filtrate was refluxed for 2 h. Chloroform was evaporated under reduced pressure to give a yellow crystalline solid 5c in almost quantitative yield. Products 5a,b and 5d-f could not be obtained in pure state due to their tendency of decomposition. These were therefore used for the next step without characterization.

**2.2.1. Compound (5c).** Yield 90%; solid; mp 112°C; UV (EtOH):  $\lambda_{max}$ : 350, 240, 367 nm; IR (KBr)  $\nu_{max}$ : 3200,

2910,1620 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  3.7 (s, 3H, NCH<sub>3</sub>), 3.9 (brs, 1H, OH), 4.26 (d, *J*=10 Hz, 1H), 4.38 (d, *J*=10 Hz, 1H), 5.92 (s, 1H), 5.98 (s, 1H), 6.78 (d, *J*=9 Hz, 1H, ArH), 6.87–7.05 (m, 3H, ArH), 7.19–7.4 (m, 4H, ArH), 8.2 (d, *J*=9 Hz, 1H, ArH); MS *m*/*z* 351 (M<sup>+</sup>); (Found: C, 68.12; H, 4.6, N, 4.21. C<sub>20</sub>H<sub>17</sub>NO<sub>3</sub>S requires C, 68.37; H, 4.84, N, 3.98%).

# **2.3.** General procedure for the intramolecular Michael addition, preparation of compounds 9a-f

The compounds 5a-f were treated with aqueous 20% KOH solution (2 mL). Within 3–5 min, a white solid separated out in excellent yield. These were filtered off, dried and recrystallized from chloroform-hexane to give white crystalline solids 9a-f.

2.3.1. 3-(4'-Chlorophenoxyacetyl)-2,3-dihydro-5-methylthieno[3,2-c]quinolin-4(5H)-one (9a). Yield 89%; solid; mp 116°C; UV (EtOH): λ<sub>max</sub>: 319, 229, 202 nm; IR (KBr)  $\nu_{\text{max}}$ : 2990, 2942, 1730, 1640, 1480 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  3.69 (s, 3H, NCH<sub>3</sub>), 3.67–3.62 (dd, J=9.5, 11 Hz, 1H, SCH<sub>2</sub>), 3.78-3.75 (dd, J=6.5, 11 Hz, 1H, SCH<sub>2</sub>), 4.85–4.82 (dd, J=6.5, 9.5 Hz, 1H, C<sub>3</sub>H), 4.99– 4.96 (d, J=17 Hz, 1H, OCH<sub>2</sub>), 5.07-5.04 (d, J=17 Hz, 1H, OCH<sub>2</sub>), 6.89–6.87 (d, J=9 Hz, 2H, ArH), 7.22–7.21 (d, J=9 Hz, 2H, ArH), 7.28-7.26 (d, J=8 Hz, 1H, ArH), 7.38-7.36 (d, J=8.5 Hz, 1H, ArH), 7.49-7.48 (d, J=8 Hz, 1H, ArH), 7.62–7.59 (m, 1H, ArH); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): δ<sub>C</sub> 29 (NCH<sub>3</sub>), 34 (C<sub>2</sub>), 54 (C<sub>3</sub>), 72 (C<sub>11</sub>), 114 (C<sub>6</sub>), 116 (C<sub>6</sub>', C<sub>2</sub>'), 122 (C<sub>9</sub>), 125 (C<sub>8</sub>), 126 (C<sub>9a</sub>), 127 (C<sub>4</sub>'), 128 (C<sub>3</sub>', C<sub>5</sub>'), 129 (C<sub>3a</sub>), 131 (C<sub>7</sub>), 139 (C<sub>9b</sub>), 153 (C<sub>5a</sub>), 156  $(C'_1)$ , 158 (C4), 204 (C10); MS m/z 385,387 (M<sup>+</sup>); (Found: C, 62.05, H, 3.9, N, 3.87. C<sub>20</sub>H<sub>16</sub>ClNO<sub>3</sub>S requires C, 62.33, H, 4.15, N, 3.63%).

**2.3.2. 3-(2'-Chlorophenoxyacetyl)-2,3-dihydro-5-methyl-thieno[3,2-c]quinolin-4(5H)-one (9b).** Yield 90%; solid; mp 148°C; UV (EtOH):  $\lambda_{max}$ : 319, 230, 202 nm; IR (KBr)  $\nu_{max}$ : 2980, 2940, 1730, 1642, 1481 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  3.69 (s, 3H, NCH<sub>3</sub>), 3.67–3.62 (dd, J=9.5, 11 Hz, 1H, SCH<sub>2</sub>), 3.78–3.75 (dd, J=6.5, 11 Hz, 1H, SCH<sub>2</sub>), 4.85–4.82 (dd, J=6.5, 9.5 Hz, 1H, C<sub>3</sub>H), 4.99–4.96 (d, J=17 Hz, 1H, OCH<sub>2</sub>), 5.07–5.04 (d, J=17 Hz, 1H, OCH<sub>2</sub>), 6.88–6.86 (d, J=9 Hz, 2H, ArH), 7.21–7.2 (d, J=9 Hz, 2H, ArH), 7.28–7.25 (d, J=8 Hz, 1H, ArH), 7.38–7.36 (d, J=8.5 Hz, 1H, ArH), 7.49–7.48 (d, J=8 Hz, 1H, ArH), 7.62–7.59 (m, 1H, ArH); MS *m*/*z* 385,387 (M<sup>+</sup>); (Found: C, 62.09, H, 4.38, N, 3.89. C<sub>20</sub>H<sub>16</sub>ClNO<sub>3</sub>S requires C, 62.33, H, 4.15, N, 3.63%).

**2.3.3. 3**-(**Phenoxyacetyl**)-**2**,**3**-dihydro-5-methylthieno-[**3**,**2**-*c*]quinolin-4(5*H*)-one (**9***c*). Yield 80%; solid; mp 140°C; UV (EtOH):  $\lambda_{max}$ : 319, 229, 202 nm; IR (KBr)  $\nu_{max}$ : 2981, 2943, 1728, 1645, 1490 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  3.69 (s, 3H, NCH<sub>3</sub>), 3.66–3.63 (dd, *J*=9.5, 11 Hz, 1H, SCH<sub>2</sub>), 3.77–3.75 (dd, *J*=6.6, 11 Hz, 1H, SCH<sub>2</sub>), 4.85–4.83 (dd, *J*=6.6, 9.5 Hz, 1H, C<sub>3</sub>*H*), 5.03–4.99 (d, *J*=17 Hz, 1H, OCH<sub>2</sub>); 5.08–5.05 (d, *J*=17 Hz, 1H, OCH<sub>2</sub>); 6.91–6.78 (m, 2H, Ar*H*), 7.17–7.14 (m, 2H, Ar*H*), 7.27–7.24 (m, 2H, Ar*H*), 7.38–7.36 (d, *J*=8.5 Hz, 1H, Ar*H*), 7.51–7.49 (m, 1H, Ar*H*), 7.62–7.59 (m, 1H, Ar*H*); MS *m*/*z* 351 (M<sup>+</sup>); (Found: C, 68.6, H, 4.61, N, 3.76.  $C_{20}H_{17}NO_3S$  requires C, 68.37, H, 4.84, N, 3.98%).

**2.3.4. 3-(**2'-**Methylphenoxyacetyl**)-**2,3-dihydro-5-methyl-thieno[3,2-***c***]<b>quinolin-4(**5*H*)-one (**9d**). Yield 90%; solid; mp 174°C; UV (EtOH):  $\lambda_{max}$ : 320, 220, 201 nm; IR (KBr)  $\nu_{max}$ : 2990, 2945, 1730, 1640, 1485 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  2.28 (s, 3H, CCH<sub>3</sub>), 3.69 (s, 3H, NCH<sub>3</sub>), 3.66–3.62 (dd, *J*=9.5, 11 Hz, 1H, SCH<sub>2</sub>), 3.76–3.72 (dd, *J*=6.5, *J*=11 Hz, 1H, SCH<sub>2</sub>), 4.85–4.83 (dd, *J*=6.5, 9.5 Hz, 1H, C<sub>3</sub>H), 4.96–4.93 (d, *J*=17 Hz, 1H, OCH<sub>2</sub>), 5.03–4.97 (d, *J*=17 Hz, 1H, OCH<sub>2</sub>), 6.78–6.77 (d, *J*=8 Hz, 1H, ArH), 6.9–6.89 (d, *J*=7.5 Hz, 1H, ArH), 7.15–7.13 (d, *J*=7.5 Hz, 2H, ArH), 7.27–7.24 (m, 1H, ArH), 7.38–7.36 (d, *J*=8.5 Hz, 1H, ArH), 7.49–7.48 (d, *J*=8 Hz, 1H, ArH), 7.62–7.59 (m, 1H, ArH); MS *m*/z 365 (M<sup>+</sup>); (Found: C, 68.79, H, 5.45, N, 3.57. C<sub>21</sub>H<sub>19</sub>NO<sub>3</sub>S requires C, 69.04, H, 5.2, N, 3.83%).

**2.3.5.** 3-(4'-Methylphenoxyacetyl)-2,3-dihydro-5-methylthieno[3,2-c]quinolin-4(5*H*)-one (9e). Yield 85%; solid; mp 132°C; UV (EtOH):  $\lambda_{max}$ : 319, 219, 202 nm; IR (KBr)  $\nu_{max}$ : 2990, 2940, 1730, 1642, 1490 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  2.28 (s, 3H, CCH<sub>3</sub>), 3.69 (s, 3H, NCH<sub>3</sub>), 3.67–3.64 (dd, *J*=11, 9.5 Hz, 1H, SCH<sub>2</sub>), 3.74– 3.72 (dd, *J*=6.5, 11 Hz, 1H, SCH<sub>2</sub>), 4.86–4.84 (dd, *J*=6.5, 9.5 Hz, 1H, C<sub>3</sub>H), 4.95–4.93 (d, *J*=17 Hz, 1H, OCH<sub>2</sub>), 5.03–4.97 (d, *J*=17 Hz, 1H, OCH<sub>2</sub>), 6.78–6.77 (d, *J*=8 Hz, 1H, ArH), 6.9–6.89 (d, *J*=7.5 Hz, 1H, ArH), 7.15–7.13 (d, *J*=7.5 Hz, 2H, ArH), 7.27–7.25 (m, 1H, ArH), 7.38–7.36 (d, *J*=8.5 Hz, 1H, ArH); MS *m*/*z* 365 (M<sup>+</sup>); (Found: C, 69.29, H, 5.43, N, 4.08. C<sub>21</sub>H<sub>19</sub>NO<sub>3</sub>S requires C, 69.04, H, 5.2, N, 3.83%).

**2.3.6. 3**-(2',5'-Dimethylphenoxyacetyl)-2,3-dihydro-5methylthieno[3,2-*c*]quinolin-4(5*H*)-one (9f). Yield 90%; solid; mp 156°C; UV (EtOH):  $\lambda_{max}$ : 320, 219, 202 nm; IR (KBr)  $\nu_{max}$ : 2988, 2942, 1733, 1641, 1484 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  2.23 (s, 3H, CCH<sub>3</sub>), 2.28 (s, 3H, CCH<sub>3</sub>), 3.68 (s, 3H, NCH<sub>3</sub>), 3.66–3.64 (dd, *J*=11, 9.5 Hz, 1H, OCH<sub>2</sub>), 3.73–3.71 (dd, *J*=6.6, 11 Hz, 1H, SCH<sub>2</sub>), 4.85–4.83 (dd, *J*=6.6, 9.5 Hz, 1H, C<sub>3</sub>H), 4.97–4.95 (d, *J*= 17 Hz, 1H, OCH<sub>2</sub>), 5.04–4.98 (d, *J*=17 Hz, 1H, OCH<sub>2</sub>), 6.66–6.64 (d, *J*=8 Hz, 1H, ArH), 6.7–6.69 (d, *J*=7.5 Hz, 1H, ArH), 7.02–7.0 (d, *J*=7.5 Hz, 1H, ArH), 7.25–7.23 (m, 1H, ArH), 7.37–7.35 (d, *J*=8.5 Hz, 1H, ArH), 7.49–7.47 (d, *J*=8 Hz, 1H, ArH), 7.61–7.58 (m, 1H, ArH); MS *m*/*z* 379 (M<sup>+</sup>); (Found: C, 69.41, H, 5.79, N, 3.45. C<sub>22</sub>H<sub>21</sub>NO<sub>3</sub>S requires C, 69.65, H, 5.54, N, 3.69%).

## 2.4. General procedure for the dehydrogenation of compound 9a, preparation of compound 10

The compound **9a** (200 mg, 0.51 mmol) was refluxed with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (0.56 mmol) in dry xylene (15 mL) for 2 h. The reaction mixture was cooled, filtered and the residue was washed with CHCl<sub>3</sub> (100 mL). The filtrate was washed successively with 10% KOH solution, water (three times) and finally dried over anhydrous sodium sulfate. The CHCl<sub>3</sub> solution was then filtered through a silica gel column and the column was washed with CHCl<sub>3</sub> (300 mL). From the elutes, CHCl<sub>3</sub> and

xylene were removed under vacuum. The solid obtained was purified by recrystallization from chloroform-pet ether (60-80) mixture.

**2.4.1. Compound (10).** Yield 90%; solid; mp 131°C; UV (EtOH):  $\lambda_{max}$ : 348, 333, 283, 229 nm; IR (KBr)  $\nu_{max}$ : 3083, 1700, 1640, 1491 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  3.78 (s, 3H, NCH<sub>3</sub>), 5.35 (brs, 2H, OCH<sub>2</sub>), 7.26–6.89 (m, 4H, ArH), 7.64–7.3 (m, 3H, ArH), 7.67 (s, 1H, C<sub>2</sub>H), 7.85–7.88 (m, 1H, ArH); MS *m*/*z* 383, 385 (M<sup>+</sup>); (Found: C, 62.41, H, 3.91, N, 3.41. C<sub>20</sub>H<sub>14</sub>ClNO<sub>3</sub>S requires C, 62.66, H, 3.65, N, 3.65%).

#### Acknowledgements

We thank the CSIR (New Delhi) for financial assistance and the University of Kalyani for providing laboratory facilities.

#### References

- 1. Claisen, L. Ber. Btsch. Chem. Ges. 1912, 45, 3157-3166.
- 2. Blechert, S. Synthesis 1989, 71-82.
- 3. Ziegler, F. E. Chem. Rev. 1988, 88, 1423-1452.
- 4. Moody, C. J. Adv. Heterocycl. Chem. 1987, 42, 203-244.
- 5. Kallmertn, J.; Wittman, M. D. Stud. Nat. Prod. Chem. 1989, 3, 233–285.
- 6. Lutz, R. P. Chem. Rev. 1984, 84, 205-247.
- 7. Bennett, G. B. Synthesis 1977, 589-606.
- Majumdar, K. C.; Balasubramanian, K. K.; Thyagarajan, B. S. J. Heterocycl. Chem. 1973, 10, 159–164.
- 9. Scheurer, H.; Zsindely, J.; Schmid, H. Helv. Khim. Acta 1973, 56, 478–489.
- Kwart, H.; George, T. J. J. Chem. Soc., Chem. Commun. 1970, 433–434.
- 11. Carroll, M. F. J. Chem. Soc. 1940, 704-706.
- 12. Carroll, M. F. J. Chem. Soc. 1940, 1266-1268.
- 13. Carroll, M. F. J. Chem. Soc. 1941, 507-511.
- 14. Kimel, W.; Cope, A. C. J. Am. Chem. Soc. 1943, 65, 1992–1998.
- 15. Marbet, R.; Saucy, G. Chimia 1960, 14, 362-363.
- 16. Saucy, G.; Marbet, R. Helv. Chim. Acta 1967, 50, 1158-1167.
- 17. Johnson, W. S. J. Am. Chem. Soc. 1970, 92, 741-743.

- Johnson, W. S.; Gravestock, M. B.; Parry, R. J.; Myers, R. F.; Bryson, T. A.; Miles, H. J. Am. Chem. Soc. 1971, 93, 4330–4332.
- Felix, D.; Gschwend-Steen, K.; Wick, A. E.; Eschensoser, A. *Helv. Chim. Acta* **1969**, *52*, 1030–1042.
- Ireland, R. E.; Mueller, R. H. J. Am. Chem. Soc. 1972, 94, 5897–5898.
- 21. Pereira, S.; Srebnik, M. Aldrichim. Acta 1993, 26, 17-29.
- 22. Majumdar, K. C.; Thyagarajan, B. S. J. Chem. Soc., Chem. Commun. 1972, 83.
- 23. Majumdar, K. C.; Thyagarajan, B. S. Int. J. Sulfur Chem. **1972**, 2A, 93.
- 24. Majumdar, K. C.; Thyagarajan, B. S. Int. J. Sulfur Chem. **1972**, 2A, 67.
- El-Osta, B.; Majumdar, K. C.; Thyagarajan, B. S. J. Heterocyclic Chem. 1973, 10 107.
- Hillard, J. B.; Reddy, K. V.; Majumdar, K. C.; Thyagarajan, B. S. *Tetrahedron Lett.* **1974**, *23*, 1999.
- Hillard, J. B.; Reddy, K. V.; Majumdar, K. C.; Thyagarajan, B. S. J. Heterocycl. Chem. **1974**, *11*, 369.
- Thyagarajan, B. S.; Majumdar, K. C. J. Heterocycl. chem. 1975, 12, 43.
- Majumdar, K. C.; Chattopadhyay, S. K. J. Chem. Soc., Chem. Commun. 1987, 524–525.
- Majumdar, K. C.; Chattopadhyay, S. K.; Khan, A. T. J. Chem. Soc., Perkin Trans. 1 1989, 1285–1288.
- Majumdar, K. C.; Ghosh, S. K. J. Chem. Soc., Perkin Trans. 1 1994, 2889–2894.
- 32. Majumdar, K. C.; Jana, G. H.; Das, U. J. Chem. Soc., Chem. Commun. 1996, 517–518.
- Majumdar, K. C.; Jana, G. H.; Das, U. J. Chem. Soc., Perkin Trans. 1 1997, 1229–1231.
- 34. Majumdar, K. C.; Biswas, P.; Jana, G. H. J. Chem. Res. (S) 1997, 310–312.
- 35. Majumdar, K. C.; Das, U.; Jana, N. K. J. Org. Chem. **1998**, 63, 3550–3553.
- 36. Majumdar, K. C.; Biswas, P. Tetrahedron 1998, 54, 11603-11612.
- 37. Majumdar, K. C.; Biswas, P. Tetrahedron 1999, 55, 1449-1456.
- Majumdar, K. C.; Ghosh, M.; Jana, M.; Saha, D. *Tetrahedron Lett.* 2002, 43, 2111–2113.
- 39. Majumdar, K. C.; Ghosh, M.; Jana, M. Synthesis 2002, 5, 669.